
Assessment

Implementing
Blueprint

Launch Teams

This article was translated from AG Connect - April issue This article was translated from AG Connect - April issue

CONTINUOUS
 DELIVERY in
90 days AGILE APPROACH PREVENTS

IMPLEMENTATION FROM
FAILING

CONTINUOUS DELIVERY
INCLUDES THE AUTOMATION

ALL MANUAL ACTIONS
AROUND TESTING,
INTEGRATION AND
DEPLOYEMENT OF

SOFTWARE. IN PARTICULAR
WITH WORKING AGILE, IT

IS INEVITABLE. HOWEVER,
USUALLY IT IS STARTED
TOO LATE, OR ENDS UP

IN DISCUSSIONS ABOUT
TOOLS. AND THAT IS A

SHAME, BECAUSE THERE
IS AN APPROACH WHICH

MAKES IT POSSIBLE
TO HAVE CONTINUOUS

DELIVERY IN PLACE IN ONLY
NINETY DAYS.

By Robert van Vark & Rini van Solingen

AGILE WORKING IS BASED ON ITERATIVE
DEVELOPMENT. Most organizations nowadays
work with iterations of two weeks or less. This
has the result that software can be released
more often. This asks for more extensive
automation of Unit Tests, Acceptance Tests,
Regression Tests, Integration- and Deployment
Processes. All these forms of automation
in practice are combined as Continuous
Delivery (CD). In practice there is however not
much attention for CD. Many organizations
look up to it and view it as a gigantic project.
And this is also true. Implementing CD and
removing all backlogs and legacies considering
automated testing, is no sinecure. But actually,

it is not really a choice anymore. The amount
of releases when working Agile makes it
impossible to test everything manually.
Besides, not testing is simply too risky. This is
also the reason why most organizations who

“DON’T SPEND AN ETERNITY
ON SELECTING TOOLS”

This article was translated from AG Connect - April issue This article was translated from AG Connect - April issue

have started to implement Agile, use
Continuous Delivery as their next step.
Then follows the next difficulty: trajectories
towards CD often quickly silt in lengthy
decision-making processes about tools
and technology. And each month that
this choice still needs to be made and the
decision is postponed, implementing CD
automatically shifts to the future. Before
you know it, three months will have passed
doing proof-of-concepts and comparing
tools. All that delay is a waste. It only puts
off the solution to the problem.

Alternatives
There are alternatives to prevent this
and they have been proven in practice.
De essence is that implementing CD
is complex and therefore works best if
done in an Agile way. The best teams
incrementally get rid of their backlog
towards CD for their own applications. This
ensureS speed and makes teams directly
experience the benefits and results. This
in turn saves time for taking the next step.
This seems obvious, but in practice, most
organizations still make the mistake of
wanting to implement Continuous Delivery
with a big bang and using Waterfall. The
past has taught us that this usually fails.

Three months
Practice shows that with this
targeted approach, it is possible
to get teams to the level where
they take along CD in their
iterations. Thus, they step by step
are taking over the backlogs on
automated testing, integration
and deployment. When teams
take their own responsibility,
focus is usually on: direct effect
since teams focus on automating
the steps which have the greatest
effect. This might be either in saving
time, taking out boring work or it
might help in improving quality.
In short, Continuous Delivery is
inescapable when organizations
start working Agile. Besides the
huge amount of work, delaying
makes little sense. Starting sooner
is way more effective. It is wise to
use an Agile approach in which step
by step, small pieces of work, are
‘automated out’. Practice shows that
within ninety days, teams are able
to work on this individually. ‘Just do
it’ is therefore a simple, but one of
the best recommendations.

Authors

RINI VAN SOLINGEN is CTO

at Prowareness (rini@scrum.

nl) and part-time professor at

TU Delft. He is one of the lead

trainers of the masterclass:

www.leading-agile-

transformation.com

ROBERT VAN VARK is Principal

Technical Consultant at

DevOn (r.vanvark@devon.nl.

To take the first steps towards

CD in 90 days, check out www.

devon.nl/continuous-delivery-

assessment.

The most important lesson therefore
is: impelementing CD is most usually
succesful when done iteratively. The
proper approach consist of three phases:
 1. Assessment
 The assessment maps the current
 way of working and present skills.
 At least as important is
 a technical assessment of the
 application. Should CD be the
 first step at this point? Or should
 the application be unbundled
 to make it more testable or easier
 to deploy?
 2. Implementing blueprint
 A blueprint for a Continuous
 Delivery Infrastructure is
 used to start up the CD
 pipeline for applications. This
 is the preparation, so teams can
 automate tests themselves and
 can deploy automatically.
 3. Launch Teams
 With help of training, coaching
 and ‘starting immediately’, teams
 are equipped with all knowledge
 and skills needed to
 incrementally automate
 everything themselves.

“DESPITE THE LARGE
PILE OF WORK, DELAYING

MAKES NO SENSE”

CONTINUOUS DELIVERY IN PRACTICE:
SIX TIPS

1. SELECT TOOLS AND START IMMEDIATELY
Good tools are important, but in the end, the teams that make the difference.
Therefore, do not spend an eternity on selecting tools. Tool selections tend to

be strongly focused on costs or on the completeness of features to be prepared
for any surprise. A deep pitfall is to keep searching for the ‘ideal’ tools. If they
even exist, and finally are found, in the end it will turn out they are not able to

integrate with one another. The ideal world does not exist, so do not strive for it.
Use a standard set which is commonly used in the market and start there.

2. CREATE AN IMAGE OF THE COMPLETE WORK
First, do an assessment to prevent surprises in the trajectory. Without intake

assessments everything may seem to be possible, which could result in some
figurative skeletons in the closet upon implementation. A proper assessment

gives insight if CD is the correct next step or if other aspects might need attention
first. Is the application even suitable for Test Automation?

3. LOOK BEYOND DEPLOYMENT AUTOMATION
Many organizations make the mistake of having a limited view on CD. They
merely see it as Deployment Automation and nothing more. Factually, they

want to automate existic manual installation actions by administrators and not
go beyond that when in fact, it is about more than only deploying. It is about
making an entire system work and keeping it that way. This makes CD much
broader and adds integrations, Automated Testing, Resilience processes and

Configuring.

4. AUTOMATE AN IMPROVED WAY OF WORK
Try to not literally automate the current process. This is often created manually

and with focus on the long-term. Try to work more effectively and efficiently.
CD helps because simplifications are also easier and more quickly testable. A

structured roll-out of Continuous Delivery hence, helps to simplify and accelerate
the current IT landscape.

5. MAKE SURE EXPERTS HELP THE TEAMS ALONG
Nothing is as frustrating for a team as knowing what the goal is, but not being

able to see how to get there. When a team is stuck on the same problem for days,
this takes a lot of energy and it might even endanger the CD implementation. It

is essential that in that case, someone is available who can immediately help the
team. Such a problem might then provide energy and motivation because the

team will see that even such cases can be solved. For this, access to expertise is
needed.

6. SEPERATE STEPS, EACH WITH DIRECT VALUE
Try not to solve all problems at once. Yes, ‘automate everything’, but only
everything that is already there. Many organizations go for the ‘Full Monty’

when implementing CD. Everything they did not do before when an application
was installed in production, the want to automate fully. Think of things such

as Infrastructure as code, dynamic on-demand provisioning of environments,
automating acceptance tests which did not even exist beforehand. Do not do it.
Start small and build on that. How do you eat an elephant? Indeed, bite by bite.

