
Continuous Delivery
Webinar DevOps Institute & DevOn

Ashwin Shankarananda
“I help organizations become a Responsive
Enterprise”

About me

• Principal consultant

• DevOn

• 11 years of IT experience

• Certified trainer

• Business Intelligence and Business Analytics

• ITIL V3

1. Need for Continuous Delivery

2. What is Continuous Delivery

3. Design & Architect Continuous Delivery Systems

4. Continuous Delivery Pipeline

5. Demo

Agenda

Basic Layout

Waterfall vs. Agile

Waterfall vs. Agile

Advantages of the Agile model

• It is focused on client process, so it makes sure that the client is continuously
involved during every stage.

• Agile teams are extremely motivated and self-organized so it’s likely they
provide a better result from the development projects.

• Agile software development methods assure that quality of development is
maintained.

• The process is completel based on the incremental progress. Therefore, the
client and team know exactly what is complete and what is not. This reduces
risk in the development process.

Benefits of Agile over Waterfall

Limitations of the Waterfall model

• It is not an ideal model for a large-size project.

• If the requirement is not clear at the beginning, it is a less effective
method.

• Very difficult to move back to make changes in the previous phases.

• The testing process starts once development is over. Hence it has high
chances of bugs to be found later in development where they are
expensive to fix.

Agile to Continuous Delivery

Continuous Delivery (CD) is the application development discipline that

takes Agile to its logical conclusion, creating software that is always ready to

release. It does this by building upon and extending Agile, CI and DevOps

practices and tools to transform the way software is delivered.

What is Continuous
Delivery?

“Continuous Delivery is the ability to get
changes of all types – including new features,
configuration changes, bug fixes and
experiments – into production, or into the hands
of users, safely and quickly in a sustainable way.”

- Jez Humble

• Build quality in

• Work in smaller batches

• Automation mindset

• Strive for Continuous Improvement

• Delivery is everyone’s responsibility

Continuous Delivery Principles

Pillars of Continuous Delivery

Configuration

management

Continuous

Integration

Continuous

Testing

CM is a practice of handling changes systematically to maintain system
integrity over time. It implements the policies, procedures, techniques and
tools to:

• Manage & Evaluate changes

• Track Status

• Maintain inventory and document

Why is it important?

• Reproducibility

• Increase uptime

• Improve performance

• Ensure Compliance

• Prevent Errors

• Reduce Costs

• Traceability

Configuration Management

Continuous Integration is a development practice that requires software
changes to be integrated into a shared repository as many times in a day as
possible, followed by automated builds, automated testing and quality
checks to catch integration errors as fast as possible it work on fail fast fix fast
approach.

What are the benefits of CI?

• Risk Mitigation

• Confidence

• Team communication

• Reduced overhead

• Consistency of Build Process

Continuous Integration

Continuous Testing is the process of executing automated tests as part of the
software delivery pipeline to obtain feedback on the business risks associated
with a software release candidate as rapidly as possible.

What are the benefits of CI?

• Reduce application-bound risks.

• Brings consistency.

• Enables Faster Release.

• Improves Test Coverage.

• Enables more transparency.

Continuous Testing

Architecting for CD

Availability Security Performance Usability

Testability Deployability Scalability

Architecting for Deployability

Deployability is a non-functional requirement that addresses how reliably

and easily software can be deployed from development into production.

• Minimize differences between environments, by effectively using CM practices.

• Parameterize and look up differences by environment.

• Deployable systems can typically be upgraded or reconfigured with zero or
minimal downtime.

• Designing for testability and deployability starts with ensuring our products
and services are composed of loosely-coupled, well-encapsulated
components or modules.

• To aid the independent deployment of components, we should also invest in
creating versioned APIs which have backwards compatibility

• Use binary versioning tools to manage artifacts to avoid rebuilds for
promotions.

• Deployment process in pre production should be identical to production,
containerization will help bring this consistency.

Architecting for Testability

When we talk about Design for Testability, we are talking about the

architectural and design decisions in order to enable us to easily and

effectively test our system.

• Software libraries, frameworks, repositories and services should also support
testability.

• Having too much logic at DB side makes testing virtually impossible.

• Flexibility to have stubs, test doubles for Unit and Component Testing.

• Efficient logging for diagnoses and maintenance.

• Flexible and simple configuration to set up a test environment.

Microservices

Microservices - is an architectural style that structures an application as a
collection of loosely coupled services, which implement business capabilities.
The microservice architecture enables the continuous delivery/deployment of

large, complex applications.

Microservices

Advantages Disadvantages

Freedom to use different technologies Increases troubleshooting challenges

Each Microservice focuses on a single business
capability Increases delay due to remote calls

Supports individual deployable units Increases efforts for configuration and other operations

Allows frequent software releases Difficult to maintain transaction safety

Ensures security of each service Tough to track data across various service boundaries

Multiple services are parallelly developed and deployed Difficult to move code between services

Pipeline

Continuous Delivery (CD) is a software strategy that enables organizations to

deliver new features to users as fast and efficiently as possible. The core idea of

CD is to create a repeatable, reliable and incrementally improving process for

taking software from concept to customer. The goal of Continuous Delivery is to

enable a constant flow of changes into production via an automated software

production line. The Continuous Delivery pipeline is what makes it all happen.

Pipeline

Pipeline

Metrics to measure

Dev/CI

1. Lead Time

2. Idle Time

3. WIP & Tech Debt

4. Cycle Time

QA
1. Idle Time

2. WIP & Tech Debt

3. Cycle Time

4. No of Defects

Deploy
1. Lead Time

2. Freq & Duration

3. Change Succes Rate

4. MTTR

Release
1. Release Freq

2. Cost/Rel

3. Predictability

Maintain
1. MTTR

2. Freq Outages

3. Support Tickets

4. Perf/Stats

Demo

Thank you!
Next webinar: DevOps Leadership - 2nd October 4pm CEST

Link in your mail!

	Continuous Delivery
	About me
	Dianummer 3
	Basic Layout
	Waterfall vs. Agile
	Benefits of Agile over Waterfall
	Agile to Continuous Delivery
	What is Continuous Delivery?
	Dianummer 9
	Pillars of Continuous Delivery
	Dianummer 11
	Dianummer 12
	Dianummer 13
	Architecting for CD
	Architecting for Deployability
	Architecting for Testability
	Microservices
	Microservices
	Pipeline
	Pipeline
	Pipeline
	Metrics to measure
	Demo
	Thank you!

